GENTILE A L, GRUHL D, RISTOSKI P, et al. information extraction in editorial setting. A Tale of PDFs[C]//HITZLER P, KIRRANE S, HARTIG O, et al. The semantic web:ESWC 2019 satellite events. Cham:Springer International Publishing,2019:69-74.
[47]
KIM H, CHOI J, PARK S, et al. Layout aware semantic element extraction for sustainable science & technology decision support[J]. Sustainability,2022,14(5):2802.
[48]
RAHMAN M M, FININ T. Unfolding the structure of a document using deep learning[DB/OL]. arXiv,2019(2019-09-29)[2023-05-10]. .
[49]
NAYYERI M, KRAVCHENKO A, ANGIONI S, et al. Link Prediction using numerical weights for knowledge graph completion within the scholarly domain[J]. IEEE Access,2021,9:116002-116014.
[50]
ARAB OGHLI O, D’SOUZA J, AUER S. Clustering semantic predicates in the open research knowledge graph[C]//TSENG Y H, KATSURAI M, NGUYEN H N. From born-physical to born-virtual:augmenting intelligence in digital libraries. Cham:Springer International Publishing,2022:477-484.
[51]
VAHDATI S, FATHALLA S, AUER S, et al. Semantic representation of scientific publications[C]//DOUCET A, ISAAC A, GOLUB K, et al. Digital libraries for open knowledge. Cham:Springer International Publishing,2019:375-379.
[52]
ABAD-NAVARRO F, BERNABé-DIAZ J A, GARCìA-CASTRO A, et al. Semantic publication of agricultural scientific literature using property graphs[J]. Applied Sciences,2020,10(3):861.
[53]
PENEV L, DIMITROVA M, SENDEROV V, et al. OpenBiodiv:a Knowledge graph for literature-extracted linked open data in biodiversity science[J]. Publications,2019,7(2):38.
[54]
MCCUSKER J P, KESHAN N, RASHID S, et al. NanoMine:A knowledge graph for nanocomposite materials science[C]//PAN J Z, TAMMA V, D’AMATO C, et al. The semantic web–ISWC 2020. Cham:Springer International Publishing,2020:144-159.
[55]
ZHU Q, QU C, LIU R, et al. Rare disease-based scientific annotation knowledge graph[J]. Frontiers in Artificial Intelligence,2022,5.
[56]
ANGIONI S, SALATINO A, OSBORNE F, et al. AIDA:A knowledge graph about research dynamics in academia and industry[J]. Quantitative Science Studies,2021,2(4):1356-1398.
[57]
ACHAKULVISUT T, BHAGAVATULA C, ACUNA D, et al. Claim extraction in biomedical publications using deep discourse model and transfer Learning[M/OL]. arXiv,2020[2024-06-05]. .
[1]
SHOTTON D. Semantic publishing:the coming revolution in scientific journal publishing[J]. Learned Publishing,2009,22(2):85-94.
IHSAN I, QADIR M A. CCRO:citation’s Context & Reasons Ontology[J]. IEEE Access,2019(7)30423-30436.
[5]
DAQUINO M, PERONI S, SHOTTON D, et al. The open citations data model[C]//PAN J Z, TAMMA V, D’AMATO C, et al. The semantic Web-ISWC 2020. Cham:Springer International Publishing,2020:447-463.
AL MANIR S, NIESTROY J, LEVINSON M A, et al. Evidence graphs:supporting transparent and FAIR computation,with defeasible reasoning on data,methods,and results[C]//GLAVIC B, BRAGANHOLO V, KOOP D. Provenance and annotation of data and processes. Cham:Springer International Publishing,2021:39-50.
[9]
FATHALLA S, AUER S, LANGE C. Towards the semantic formalization of science[C]//Proceedings of the 35th annual ACM symposium on applied computing. New York:ACM,2020:2057-2059.
[10]
FATHALLA S, VAHDATI S, AUER S, et al. SemSur:a core ontology for the semantic representation of research findings[J]. Procedia Computer Science,2018,137:151-162.
[11]
SAY A, FATHALLA S, VAHDATI S, et al. Semantic representation of physics research data[C]//12th international conference on knowledge engineering and ontology development(KEOD 2020). Setúbal,Portugal:Science and Technology Publications,Lda,2020:64-75.
[12]
SAY Z, FATHALLA S, VAHDATI S, et al. Ontology design for pharmaceutical research outcomes[C]//Digital libraries for open knowledge:24th international conference on theory and practice of digital libraries(TPDL 2020). Cham:Springer International Publishing,2020:119-132.
[13]
BORDEA G, NIKIEMA J, GRIFFIER R, et al. FIDEO:food interactions with drugs evidence ontology[C/OL]//11th International Conference on Biomedical Ontologies. 2020[2023-05-09]. .
[14]
SANCHEZ GRAILLET O, CIMIANO P, WITTE C, et al. C-tro:an ontology for summarization and aggregation of the level of evidence in clinical trials[C]//Proceedings of the Workshop Ontologies and Data in Life Sciences(ODLS 2019)in the Joint Ontology Workshops’(JOWO 2019). Aachen:RWTH,2019.
Chan J, Qian X, Fenlon K, et al. Where the rubber meets the road:identifying integration points for semantic publishing in existing scholarly practice[EB/OL].(2020-07-07)[2024-02-02]. .
IHSAN I, QADIR M A. An NLP-based citation reason analysis using CCRO[J]. Scientometrics,2021,126(6):4769-4791.
[19]
MARTIN L, HENRICH A. RDFtex:Knowledge exchange between LaTeX-Based research publications and scientific knowledge graphs[C]//SILVELLO G, CORCHO O, MANGHI P, et al. Linking theory and practice of digital libraries. Cham:Springer International Publishing,2022:26-38.
[20]
SADEGHI A, CAPADISLI S, WILM J, et al. Opening and reusing transparent peer reviews with automatic article annotation[J]. Publications,2019,7(1):13.
[21]
SALATINO A A, OSBORNE F, BIRUKOU A, et al. Improving editorial workflow and metadata quality at springer nature[C]//GHIDINI C, HARTIG O, MALESHKOVA M, et al. The semantic Web–ISWC 2019. Cham:Springer International Publishing,2019:507-525.
ELLERM A, ADAMS B, GAHEGAN M, et al. Enabling live publication[C]//2022 IEEE 18th international conference on e-science(e-Science). New York:IEEE,2022:419-420.
[24]
DE HAAN R, TIDDI I, BEEK W. Discovering research hypotheses in social science using knowledge graph embeddings[C]//VERBORGH R, HOSE K, PAULHEIM H, et al. The semantic Web. Cham:Springer International Publishing,2021:477-494.
LEUNG T I, KUHN T, DUMONTIER M. Representing physician suicide claims as nanopublications:proof-of-concept study creating claim networks[J]. JMIRx Med,2022,3(3):e34979.
[28]
ASIF I, TIDDI I, GRAY A J. Using nanopublications to detect and explain contradictory research claims[C]//2021 IEEE 17th international conference on eScience(eScience). New York:IEEE,2021:1-10.
[29]
BUCUR C I, KUHN T, CEOLIN D. A unified nanopublication model for effective and user-friendly access to the elements of scientific publishing[C]//KEET C M, DUMONTIER M. Knowledge engineering and knowledge management. Cham:Springer International Publishing,2020:104-119.
[30]
DIMITROVA M, GEORGIEV T, PENEV L. A nano(publication)approach towards big data in biodiversity[J]. Biodiversity Information Science and Standards,2021,5:e74351.
[31]
FEIJOó M P P, JARDIM R, SERRA DA CRUZ S M, et al. GAP:enhancing semantic interoperability of genomic datasets and provenance through nanopublications[C]//GAROUFALLOU E, OVALLE-PERANDONES M A, VLACHIDIS A. Metadata and semantic research. Cham:Springer International Publishing,2022:336-348.
[32]
LEK T, DE GROOT A, KUHN T, et al. Provenance for linguistic corpora through nanopublications[C]//Proceedings of the 14th Linguistic Annotation Workshop. 2020:13-23.
[33]
ASIF I, CHEN-BURGER J, GRAY A J G. Data quality issues in current nanopublications[C]//2019 15th International Conference on eScience(eScience). New York:IEEE,2019:522-527.
[34]
KUHN T, TAELMAN R, EMONET V, et al. Semantic micro-contributions with decentralized nanopublication services[J]. PeerJ Computer Science,2021,7:e387.
[35]
GIACHELLE F, DOSSO D, SILVELLO G. Search,access,and explore life science nanopublications on the Web[J]. PeerJ Computer Science,2021,7:e335.
[36]
FABRIS E, KUHN T, SILVELLO G. A Framework for citing nanopublications[C]//DOUCET A, ISAAC A, GOLUB K, et al. Digital libraries for open knowledge. Cham:Springer International Publishing,2019:70-83.
[37]
JARADEH M Y, OELEN A, FARFAR K E, et al. Open research knowledge graph:next generation infrastructure for semantic scholarly knowledge[C]//Proceedings of the 10th international conference on knowledge capture. Marina Del Rey CA USA:ACM,2019:243-246.
[38]
BRACK A, HOPPE A, STOCKER M, et al. Analysing the requirements for an open research knowledge graph:use cases,quality requirements,and construction strategies[J]. International Journal on Digital Libraries,2022,23(1):33-55.
[39]
F?RBER M. The microsoft academic knowledge graph:a linked data source with 8 billion triples of scholarly data[C]//The semantic Web–ISWC 2019:18th international semantic web conference,part II 18. Cham:Springer,2019:113-129.
[40]
ZHANG F, LIU X, TANG J, et al. Oag:toward linking large-scale heterogeneous entity graphs[C]//Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. New York:Association for Computing Machinery,2019:2585-2595.
[41]
DESSì D, OSBORNE F, REFORGIATO RECUPERO D, et al. AI-KG:An automatically generated knowledge graph of artificial intelligence[C]//PAN J Z, TAMMA V, D’AMATO C, et al. The semantic Web–ISWC 2020. Cham:Springer International Publishing,2020:127-143.
[42]
DESSì D, OSBORNE F, REFORGIATO RECUPERO D, et al. SCICERO:a deep learning and NLP approach for generating scientific knowledge graphs in the computer science domain[J]. Knowledge-Based Systems,2022,258:109945.
[43]
DESSì D, OSBORNE F, REFORGIATO RECUPERO D, et al. CS-KG:a large-scale knowledge graph of research entities and claims in computer science[C]//SATTLER U, HOGAN A, KEET M, et al. The semantic Web–ISWC 2022. Cham:Springer International Publishing,2022:678-696.
D’SOUZA J, AUER S. NLPContributions:an annotation scheme for machine reading of scholarly contributions in natural language processing literature[C]//EEKE 2020-Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents. Aachen:RWTH,2020:16-27.
[58]
LI X, BURNS G, PENG N. Scientific discourse tagging for evidence extraction[C]//Proceedings of the 16th conference of the european chapter of the association for computational linguistics:Main Volume. Cedarville:ACL,2021:2550-2562.
[59]
ACCUOSTO P, SAGGION H. Mining arguments in scientific abstracts with discourse-level embeddings[J]. Data & Knowledge Engineering,2020,129:101840.
[60]
AL KHATIB K, GHOSAL T, HOU Y, et al. Argument mining for scholarly document processing:taking stock and looking ahead[C/OL]//Proceedings of the second workshop on scholarly document processing. Online:Association for Computational Linguistics,2021:56-65[2023-04-05]. .
[61]
BINDER A, VERMA B, HENNIG L. Full-Text argumentation mining on scientific publications[J]. AACL-IJCNLP 2022,Cedarville:ACL,2022:54.
[62]
RUOSCH F, SARASUA C, BERNSTEIN A. BAM:benchmarking argument mining on scientific documents[C/OL]//CEUR Workshop Proceedings,2022[2024-06-05]. .
[63]
VOGT L, D’SOUZA J, STOCKER M, et al. Toward representing research contributions in scholarly knowledge graphs using knowledge graph cells[C]//Proceedings of the ACM/IEEE joint conference on digital libraries in 2020. Virtual Event China:ACM,2020:107-116.
[64]
BUCUR C I, KUHN T, CEOLIN D, et al. Expressing High-Level scientific claims with formal semantics[C]//Proceedings of the 11th on knowledge capture conference. New York,NY,USA:Association for Computing Machinery,2021:233-240.
SKULIMOWSKI M. A semantic representation of the citation structure[C]//Metadata and semantic research:13th international conference(MTSR 2019). Cham:Springer,2019:298-303.
[67]
PERONI S, CIANCARINI P, GANGEMI A, et al. The practice of self-citations:a longitudinal study[J]. Scientometrics,2020,123(1):253-282.
[68]
ZHU Y, YAN E, PERONI S, et a. Nine million book items and eleven million citations:A study of book-based scholarly communication using openCitations[J]. Scientometrics,2020,122:1097-1112.
[69]
LOPEZ-RODRIGUEZ V, CEBALLOS H G. Modeling scientometric indicators using a statistical data ontology[J]. Journal of Big Data,2022,9(1):9.
[70]
FATHALLA S, VAHDATI S, LANGE C, et al. SEO:a scientific events data model[C]//GHIDINI C, HARTIG O, MALESHKOVA M, et al. The semantic Web–ISWC 2019. Cham:Springer International Publishing,2019:79-95.
[71]
CHIALVA D, MUGABUSHAKA A M. DINGO:an ontology for projects and grants linked data[C]//BELLATRECHE L, BIELIKOVá M, BOUSSA?D O, et al. ADBIS,TPDL and EDA 2020 common workshops and doctoral consortium. Cham:Springer International Publishing,2020:183-194.
[72]
TAPIA-LEON M, SANTANA-PEREZ I, POVEDA-VILLALóN M, et al. Extension of the BiDO ontology to represent scientific production[C]//Proceedings of the 2019 8th international conference on educational and information technology. New York:ACM,2019:166-172.
[73]
MAATOUK Y. AI-SPedia:a novel ontology to evaluate the impact of research in the field of artificial intelligence[J]. PeerJ Computer Science,2022,8:e1099.
[74]
EMALDI M, PUERTA M, BUJáN D, et al. ROH:towards a highly usable and flexible knowledge model for the academic and research domains[J]. Semantic Web,2022.
[75]
PAHARIA N, POZI M S M, JATOWT A. Change-Oriented summarization of temporal scholarly document collections by semantic evolution analysis[J]. IEEE Access,2022,10:76401-76415.
[76]
LACKNER A, FATHALLA S, NAYYERI M, et al. Analysing the evolution of computer science events leveraging a scholarly knowledge graph:a scientometrics study of top-ranked events in the past decade[J]. Scientometrics,2021,126(9):8129-8151.