Please wait a minute...
科技与出版  2025, Vol. 44 Issue (8): 102-112    
版权视界
人工智能生成内容的版权风险治理比较研究
李鸿飞,熊祎斐
外语教学与研究出版社,100081,北京
Comparative Study on Copyright Risks and Compliance Governance of Artificial Intelligence-Generated Content
LI Hongfei,XIONG Yifei
Foreign Language Teaching and Research Press, 100081, Beijing, China
全文: HTML    PDF(11681 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 

生成式人工智能正在加速重塑全球内容产业与版权治理格局。本文比较美国、欧盟、英国、日本和韩国等在人工智能生成内容版权治理中的实践及产业应用,结合我国出版业数智化转型进程,剖析当前出版行业面临的挑战,提出健全权属分级认定机制、搭建统一内容数据中台、推进平台合规责任前置、构建复合型人才支撑体系,以及顺应全球趋势推动出版业向知识服务与数据服务转型的多维治理策略。

关键词 人工智能生成内容版权治理国际比较    
Abstract

Generative artificial intelligence (GAI) is transforming global content industries and copyright governance. As a general-purpose technology with broad applicability, adaptability, and cross-domain complementarity, GAI enables unprecedented scalability, personalization, and efficiency in content creation. Yet its rapid integration into publishing ecosystems introduces systemic challenges. Artificial intelligence–generated content (AIGC) erodes originality standards in human–machine collaboration, fragments ownership across multi-actor, algorithm-mediated chains, and creates legal uncertainty over large-scale use of protected data in model training. These developments destabilize rights allocation, diminish the market value of copyright assets, and weaken collaborative mechanisms essential to digital–intelligent transformation. This study undertakes a comparative analysis of governance regimes in the United States, European Union, United Kingdom, Japan, and South Korea. The U.S. relies on a jurisprudence-led model centered on the "human authorship" threshold and evolving fair use interpretations, supplemented by targeted industry self-regulation. The EU advances a legislative-first approach, embedding text and data mining (TDM) exceptions and mandatory disclosure of training data within a transparency-oriented framework. The U.K. emphasizes negotiated policymaking, industry standards, and provenance authentication through cross-sectoral coordination. Japan and South Korea prioritize contract-based governance and procedural standardization, requiring generation-process documentation and applying technical tools such as originality detection and blockchain registries. While these models provide instructive elements, each faces constraints: U.S. jurisprudence lags in addressing non-human creativity, EU legislative breadth risks over-regulation, U.K. consensus-building can slow adaptation, and Japan–Korea contractualism may inadequately address cross-border enforcement. Common trends nonetheless emerge, including a shift from static enforcement toward process-oriented governance, the institutionalization of data and authorship transparency, and strengthened multi-stakeholder coordination. Building on these insights, the paper proposes a five-dimensional governance architecture for China's publishing sector: (Ⅰ) tiered authorship attribution quantifying human creative input and archiving prompts, model invocations, and editorial interventions; (Ⅱ) a unified content–data infrastructure standardizing asset archiving, labeling, and graded circulation; (Ⅲ) proactive platform compliance integrating risk-tiered review, dynamic infringement detection, and standardized dispute resolution; (Ⅳ) a cross-disciplinary talent pipeline combining content expertise, legal literacy, and AI proficiency, supported by joint industry–academia–technology training; (Ⅴ) a strategic shift toward knowledge-as-a-service and data-as-a-service, repositioning publishing as an integrated, analytics-driven knowledge ecosystem. Rather than advocating direct transplantation of foreign models, the analysis evaluates their transferability, highlighting structural conditions and institutional constraints that shape their applicability to China. By integrating comparative legal perspectives with sector-specific diagnostics, the study demonstrates how selective adaptation, informed by empirical assessment, can enhance the responsiveness and resilience of copyright governance. The findings emphasize the necessity for evidence-based, domain-specific policy design that balances technological innovation with the protection of creative ecosystems, providing a reference for aligning domestic reforms with evolving international norms. Ultimately, effective AIGC governance demands adaptive, layered, and coordinated responses across legal, industrial, and technological domains. By synthesizing international best practices with indigenous innovation, China's publishing sector can construct a replicable governance model that safeguards rights, fosters innovation, and strengthens its strategic position in the global knowledge economy.

Key wordsartificial intelligence-generated content (AIGC)    copyright governance    cross-national comparison
出版日期: 2025-09-09
基金资助:2025年度中华出版促进会研究课题阶段性成果(2025ZBCH-JYYB01)

引用本文:

李鸿飞,熊祎斐. 人工智能生成内容的版权风险治理比较研究[J]. 科技与出版, 2025, 44(8): 102-112.
LI Hongfei,XIONG Yifei. Comparative Study on Copyright Risks and Compliance Governance of Artificial Intelligence-Generated Content. Science-Technology & Publication, 2025, 44(8): 102-112.

链接本文:

http://kjycb.tsinghuajournals.com/CN/      或      http://kjycb.tsinghuajournals.com/CN/Y2025/V44/I8/102

1 BROWN T , MANN B , RYDER N , et al. Language models are Few-Shot Learners[J]. Advances in Neural Information Processing Systems, 2020, 33, 1877- 1901.
2 BRESNAHAN T F , TRAJTENBERG M . General purpose technologies:‘Engines of Growth’?[J]. Journal of Econometrics, 1995, 65 (1): 83- 108.
3 GERVAIS D J . AI and copyright:Emerging issues[J]. Iowa Law Review, 2020, 105 (4): 2051- 2094.
4 张伟君. 论大模型训练中使用数据的著作权规制路径[J]. 东方法学, 2025 (2): 79- 92.
5 张大伟. 中国出版业竞争态势和生态格局[J]. 编辑学刊, 2025 (2): 6- 12.
6 孙保营, 董琎. AIGC融入学术出版:变革、问题与对策[J]. 科技与出版, 2025 (4): 31- 36.
7 WIPO. WIPO technology trends 2023: Artificial intelligence[R]. Geneva:World Intellectual Property Organization, 2023.
8 王芳. 两翼共振互相赋能:以外研社数字化与国际化的发展策略与实践探索为例[J]. 出版科学, 2025, 33 (2): 15- 21.
9 韩新磊. AIGC的版权侵权风险、救济困境与制度因应[J]. 出版发行研究, 2024 (4): 78- 82.
10 刘杰勇. 论人工智能生成内容的著作权保护:基于比较法的视角[J]. 比较法研究, 2024 (4): 176- 193.
11 ELKIN-KOREN N , PEREL M . Governance by platforms[J]. Michigan Law Review, 2021, 119 (6): 1291- 1323.
12 BENTLY L , SHERMAN B . Intellectual property law[M]. 6th ed Oxford: Oxford University Press, 2022.
13 杨利华, 王诗童. 人工智能生成内容的著作权规制研究[J]. 法治研究, 2025 (3): 57- 71.
14 杨昆. 人机关系之辩:基于人工智能生成内容著作权司法保护实践的思考[J]. 中国编辑, 2024 (9): 44- 51.
15 MAK V . Artificial intelligence and the TDM exception:Recent developments in the EU copyright law[J]. European Intellectual Property Review, 2021, 43 (10): 601- 610.
16 HELBERGER N , PIERSON J , POELL T . Digital platforms and public values[J]. The Information Society, 2018, 34 (1): 1- 12.
17 Thaler v. Perlmutter, No. 1: 22-cv-01564, United States district court for the district of columbia[EB/OL]. [2025-07-02]. https://ecf.dcd.uscourts.gov/cgi-bin/show_public_doc?2022cv1695-24.
18 News report on AI copyright cases[EB/OL].(2023-09-15)[2025-07-02]. https://www.reuters.com/legal/litigation.
19 Federal judge rules AI training is fair use in anthropic copyright case[EB/OL].(2025-06-26)[2025-07-02]. https://www.publishersweekly.com/pw/by-topic/digital/copyright/article/98089-federal-judge-rules-ai-training-is-fair-use-in-anthropic-copyright-case.html.
20 AI content tracking product brief[EB/OL].(2024-04-10)[2025-07-02]. https://www.valent.ai/solutions.
21 Statement on AI and copyright[EB/OL].(2024-05-20)[2025-07-02]. https://publishers.org/news/aap-statement-on-ai-and-copyright/.
22 Directive(EU)2019/790 of the European Parliament and of the Council of 17 April 2019 on copyright and related rights in the Digital Single Market[EB/OL].(2019-04-17)[2025-07-02]. https://eur-lex.europa.eu/eli/dir/2019/790/oj.
23 Artificial intelligence act[EB/OL].(2024-05-21)[2025-07-02]. https://data.consilium.europa.eu/doc/document/PE-48-2024-INIT/en/pdf.
24 Policy on the use of AI tools in Research[EB/OL].(2023-06-01)[2025-07-02]. https://www.springernature.com/gp/policies/publishing-ethics/ai-tools.
25 Blockchain for good: use cases[R]. Brussels: International Association for Trusted Blockchain Applications, 2023.
26 Response to artificial intelligence and copyright consultation[EB/OL].(2023-01-01)[2025-07-02]. https://www.gov.uk/government/publications/artificial-intelligence-and-copyright-government-response.
27 Data protection and digital information bill[EB/OL].(2024-04-15)[2025-07-02]. https://bills.parliament.uk/bills/3322.
28 Artificial intelligence taskforce set up to address opportunities and challenges for UK publishing industry[EB/OL]. [2024-04-22]. https://www.publishers.org.uk/our-work/artificial-intelligence/.
29 Content credentials project[EB/OL].(2024-05-15)[2025-07-02]. https://www.adobe.com/go/contentcredentials.
30 Copyright act, Japan[EB/OL]. [2025-07-02]. https://www.wipo.int/wipolex/en/legislation/details/22612.
31 Guidelines for AI-generated content[EB/OL].(2023-10-01)[2025-07-02]. https://www.bunka.go.jp/english/.
32 Policy on AI and content[EB/OL].(2023-12-01)[2025-07-02]. https://www.meti.go.jp/english/.
33 AI content similarity and copyright system[EB/OL].(2023-12-20)[2025-07-02]. https://www.fujitsu.com/global/.
34 Guidelines for copyright of AI-generated content[EB/OL].(2022-09-01)[2025-07-02]. https://www.mcst.go.kr/english/.
35 Report on AI and copyright in korea[EB/OL].(2022-11-30)[2025-07-02]. https://www.chosun.com/.
36 中国数字出版产业年度报告课题组, 崔海教, 王飚, 等. 2023—2024年中国数字出版产业年度报告(摘要)[J]. 出版发行研究, 2024 (11): 29- 36.
37 姬艾佟. 人工智能生成内容版权保护与证明要素[J]. 中国出版, 2025 (8): 53- 60.
38 种晓明. AIGC赋能出版业背景下版权监管新路径研究[J]. 科技与出版, 2023 (8): 96- 104.
39 人工智能生成合成内容标识办法[EB/OL].(2025-03-14)[2025-07-14]. https://www.cac.gov.cn/2025-03/14/c_1743654684782215.htm.
40 王宣, 李海涛. 人机协同赋能出版业内容生产:AI智能体驱动下的范式重构与模式创新[J]. 出版参考, 2025 (5): 11- 16.
41 王芳. 深度融合背景下出版社战略人力资源培养策略[J]. 中国出版, 2024 (11): 19- 23.
[1] 沈锡宾,王立磊. 人工智能生成学术期刊文本的检测研究*[J]. 科技与出版, 2023, 42(8): 56-62.
[2] 陈晨. 论人工智能生成内容的可版权性问题[J]. 科技与出版, 2023, 42(6): 98-106.
[3] 余俊缘,陈俊凯. 群体智能创作场景中AIGC权属规则的构建*[J]. 科技与出版, 2023, 42(11): 158-167.
[4] 叶俊, 朱鸿军. 全媒体传播工程实施的版权困境与治理之策*[J]. 科技与出版, 2021, 40(1): 77-82.