Please wait a minute...
科技与出版  2025, Vol. 44 Issue (1): 77-88    
产业观察
生成式人工智能应用场景下的学术出版和学术编辑:挑战与机遇
谢寿光1,王誉梓2
1. 哈尔滨工程大学人文社会科学学院,150001,哈尔滨
2. 清华大学社会科学学院,100084,北京
Academic Publishing and Scholarly Editing in the Context of Generative Artificial Intelligence: Challenges and Opportunities
XIE Shouguang1,WANG Yuzi2
1. School of Humanities and Social Sciences, Harbin Engineering University, 150001, Harbin, China
2. Department of Sociology, Tsinghua University, 100084, Beijing, China
全文: HTML    PDF(1695 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 

随着生成式人工智能的迅速崛起,学术出版与学术编辑领域面临深刻变革。文章聚焦生成式人工智能在学术出版与学术编辑中的应用场景,特别是在内容生成、多模态出版、审稿与编辑加工等环节的深度嵌入,探讨其对传统出版与编辑工作的重新定义,以及由此带来的挑战与机遇。同时,文章提出了推动学术出版与学术编辑高质量发展的战略路径,特别是在技术革新、专业伦理和人才培养等方面的可行建议,以助力中国式现代化背景下的学术出版与学术编辑革新。

关键词 生成式人工智能学术出版学术编辑智能编辑知识服务    
Abstract

The rapid rise of Generative Artificial Intelligence (GenAI) is fundamentally transforming academic publishing and scholarly editing, ushering in a new era of possibilities. This paper explores the diverse applications of GenAI within these fields, assessing both the opportunities and challenges it introduces, while proposing strategies for achieving sustainable, high-quality development. It begins by examining the technological advancements that underpin this transformation, particularly breakthroughs in large-scale pre-trained models and multimodal generation technologies. These developments enable AI to generate natural language texts as well as multimodal content, including images, audio, and video, significantly expanding the ways in which knowledge can be disseminated and communicated within academia. Academic publishing, traditionally focused on text-based content, has evolved into a collaborative process where humans and machines jointly produce and disseminate knowledge. This shift is exemplified by the integration of augmented reality (AR) and virtual reality (VR), which enrich the user experience and engagement by enabling richer, more immersive content. The role of academic editors has similarly shifted from operators merely processing content to curators and managers of multimodal materials. With the aid of advanced AI tools, editors now focus on tasks such as content integration, value discovery, and creative optimization, further driving innovation in how academic knowledge is produced and disseminated. This paper also explores how GenAI is applied to various stages of academic publishing, from intelligent search and translation during topic selection to knowledge tracing and graph-based analysis in peer review. AI-powered automated editing tools have streamlined the manuscript refinement process, while AI-driven multimodal content generation enhances both the production and distribution of academic works. Furthermore, the integration of digital technologies has fostered greater interactivity and reach, particularly through the formation of academic communities that enhance collaboration and feedback. Despite these advantages, the widespread adoption of GenAI brings several challenges. A major concern is the redefinition of the academic publishing process and the evolving role of editors, which necessitates upskilling and adapting to new technologies. Ethical concerns also emerge, particularly pertaining to academic integrity, intellectual property rights, and the appropriate use of AI-generated content. Additionally, the gap between current talent development and the technological demands of the industry presents a critical issue that requires urgent attention. Nevertheless, the opportunities provided by GenAI far outweigh these challenges. By enhancing the efficiency and effectiveness of publishing workflows, GenAI enables deeper engagement with the research lifecycle and facilitates global academic collaboration. Its ability to support multilingual and multimodal publishing is particularly notable, as it breaks down linguistic barriers and enriches the ways in which knowledge is expressed and shared across cultures. In light of these developments, this paper proposes six strategic pathways for advancing academic publishing in the era of GenAI: raising awareness of the value of GenAI and promoting innovation-driven strategies; upholding professional ethics and publishing standards to preserve academic integrity; developing AI-powered editing models tailored to the Chinese language and cultural context; leveraging GenAI to enhance multilingual and multimodal publishing and expand the value chain; addressing the ethical and regulatory gaps in AI applications to mitigate risks; and reshaping talent development and training systems to cultivate interdisciplinary expertise in AI-driven academic publishing.

Key wordsgenerative artificial intelligence (GenAI)    academic publishing    scholarly editing    intelligent editing    knowledge services
出版日期: 2025-03-12

引用本文:

谢寿光,王誉梓. 生成式人工智能应用场景下的学术出版和学术编辑:挑战与机遇[J]. 科技与出版, 2025, 44(1): 77-88.
XIE Shouguang,WANG Yuzi. Academic Publishing and Scholarly Editing in the Context of Generative Artificial Intelligence: Challenges and Opportunities. Science-Technology & Publication, 2025, 44(1): 77-88.

链接本文:

http://kjycb.tsinghuajournals.com/CN/      或      http://kjycb.tsinghuajournals.com/CN/Y2025/V44/I1/77

1 谢寿光. 中国学术出版十年(2011—2020)[M]. 北京: 社会科学文献出版社, 2022: 1- 5.
2 LUND B D , WANG T , MANNURU N R , et al. ChatGPT and a new academic reality:Artificial Intelligence‐written research papers and the ethics of the large language models in scholarly publishing[J]. Journal of the Association for Information Science and Technology, 2023 (5): 570- 581.
3 SENGAR S S,HASAN A B,KUMAR S,et al. Generative Artificial Intelligence:A Systematic Review and Applications[J]. arXiv preprint arXiv:2405.11029,2024.
4 BASYAL L,SANGHVI M. Text summarization using large language models:A comparative study of MPT-7B-instruct,Falcon-7b-instruct,and OpenAI Chat-GPT models[J]. arXiv preprint arXiv:2310.10449,2023.
5 TYSER K,SEGEV B,LONGHITANO G,et al. Ai-driven review systems:Evaluating llms in scalable and bias-aware academic reviews[J]. arXiv preprint arXiv:2408. 10365,2024.
6 LIU J,WANG Z,XIE J,et al. From ChatGPT,DALL-E 3 to Sora:How has Generative AI Changed Digital Humanities Research and Services?[J]. arXiv preprint arXiv:2404. 18518,2024.
7 Chen H,Wang X,Zhou Y,et al. Multi-Modal Generative AI:Multi-modal LLM,Diffusion and Beyond[J]. arXiv preprint arXiv:2409.14993,2024.
8 许力以. 中国大百科全书:新闻出版[M]. 北京: 中国大百科全书出版社, 1990: 8.
9 谢曙光. 学术出版研究:中国学术图书质量与学术出版能力评价[M]. 北京: 社会科学文献出版社, 2018: 1.
10 戴文葆. 中国大百科全书:新闻出版[M]. 北京: 中国大百科全书出版社, 1990: 36.
11 谢寿光. 作者手册[M]. 北京: 社会科学文献出版社, 2020.
[1] 傅爱雯,王跃,邵波. 数字出版融合生态:体系构建与业务组织[J]. 科技与出版, 2024, 43(9): 63-70.
[2] 郭壬癸. 使用生成式人工智能对学术出版伦理的冲击与法律治理*[J]. 科技与出版, 2024, 43(9): 25-33.
[3] 刘倩,王京山,詹洪春. 关于生成式人工智能的应用规范研究与启示[J]. 科技与出版, 2024, 43(8): 27-33.
[4] 孙山,张雯雯. 生成式人工智能预训练中权利限制制度的选择与建构*[J]. 科技与出版, 2024, 43(7): 6-15.
[5] 袁真富,夏子轩. 机器学习中作品利用的著作权补偿金制度研究*[J]. 科技与出版, 2024, 43(7): 28-36.
[6] 徐小奔,薛少雄. 生成式人工智能服务提供者版权注意义务的法律构造*[J]. 科技与出版, 2024, 43(7): 48-58.
[7] 王杰. 生成式人工智能服务输出侵犯版权内容的救济研究*[J]. 科技与出版, 2024, 43(7): 59-69.
[8] 李巨星,姜莹. 生成式人工智能赋能出版高质量发展:价值意义、现实梗阻与调治路径*[J]. 科技与出版, 2024, 43(7): 103-111.
[9] 孙松茜. 浅谈学术出版品牌化建设[J]. 科技与出版, 2024, 43(6): 95-99.
[10] 王真真,李乾丙,王雪莲,王相飞. AI背景下智慧体育教育出版的知识服务转型路径研究*[J]. 科技与出版, 2024, 43(3): 109-116.
[11] 卢晓熙,陈奎莲. 创新驱动可持续增长:专业出版社深度融合的方向和路径分析*[J]. 科技与出版, 2024, 43(2): 58-63.
[12] 宋奇,蒋雪颖. 专业书店是否要“破圈”:基于人文考古书店反常个案的研究*[J]. 科技与出版, 2024, 43(12): 51-59.
[13] 王小艳. 专题类学术资源库建设:社科类出版单位数字化实践的重要面向[J]. 科技与出版, 2024, 43(1): 96-102.
[14] 戚德祥,马瑞洁. 数字内容资源开发与管理:出版知识服务转型的关键*[J]. 科技与出版, 2023, 42(9): 20-28.
[15] 彭昱剑,范军. 生成式人工智能视角下的出版品牌资源建设[J]. 科技与出版, 2023, 42(9): 29-35.