Please wait a minute...
科技与出版  2025, Vol. 44 Issue (10): 105-118    
版权视界
从“分散许可”到“集中治理”:法定许可制度因应人工智能训练行为的优化方案
孙山,曾翊展
西南政法大学民商法学院,401120,重庆
From Decentralized Licensing to Centralized Governance: Optimizing the Statutory Licensing Regime for Artificial Intelligence Training Behavior
SUN Shan,ZENG Yizhan
Southwest University of Political Science and Law, Civil and Commercial Law School, 401120, Chongqing, China
全文: HTML    PDF(1782 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 

法定许可作为因应生成式人工智能未经许可利用他人尚在保护期内的作品进行训练造成侵权风险的重要制度,因大模型利用海量作品进行训练的特征所引发的权利主体寻找困局与天价报酬支付困局,阻碍着以“分散许可”为底层框架所构建起的传统法定许可制度的扩张适用;而法定许可制度价值导向的模糊不清,导致制度构建的方向摇摆不定。破局的关键,在于转换破解人工智能侵权风险困局的分析思路,在效率本位的市场价值导向下,结合人工智能对于受训作品的利用需求,构建以“集中治理”模式为基础的“大型作品数据库”法定许可制度。在这一底层制度架构之上,发挥“大型作品数据库”所拥有的作品体量优势与治理能力优势,以许可使用费的“集体计算标准”代替“个体计算标准”,化解法定许可制度因应人工智能训练行为时的权利主体寻找困局与天价报酬支付困局,回应人工智能产业的发展需求。

关键词 生成式人工智能大模型训练法定许可效率集中治理    
Abstract

The unauthorized use of other people's works that are still under copyright protection for training of generative artificial intelligence raises a huge risk of copyright infringement. As an important system to cope with the infringement risk of generative AI training by unauthorized use of other people's works within the protection period, the quandary of searching for the right subject and the quandary of payment of exorbitant remuneration triggered by the characteristics of large models training by using massive works have impeded the expansion of the traditional statutory license system built on the underlying framework of decentralized licensing; and the ambiguity of the value orientation of the statutory license system has led to the construction of the system. The ambiguity of the value orientation of the statutory licensing system leads to the wavering direction of the system construction, and the application of the statutory licensing system to the infringement risk management of the training of large models of artificial intelligence will thus become more difficult. The key to solving the problem lies in the conversion of the analytical idea of cracking the AI infringement risk predicament: under the concept of positive-sum game, starting from the attribute of "industrial law" of the copyright law, and following the market value orientation of efficiency, combining with the demand of AI for the utilization of the trained works, the construction of a "centralized governance" model is based on the "centralized governance" model, and the "centralized management" model is based on the "centralized management" model. Based on the "centralized governance" model, a statutory licensing system for "large-scale work database" is constructed. With the help of this underlying structure, under the "collective calculation standard" of the license fee, the upper limit of the calculation standard of the statutory license fee can be clarified to prevent the emergence of "sky-high license fee". At the same time, collective licensing can also reduce the high cost of seeking licenses from all right holders one by one, so as to effectively deal with the problem of identifying right holders when the statutory licensing system responds to the training behavior of artificial intelligence. In addition, the arrangement of the statutory licensing system for "large-scale work database" can also give full play to the advantages of the volume of works and the governance capacity of "large-scale work database", and improve the ability of copyright holders to obtain royalties by confirming and tracing the legitimacy of the training data of large-scale models. While confirming and tracing the legitimacy of large model training data, the arrangement of the statutory licensing system can also enhance the protection of the ability of copyright owners to obtain royalties, so as to accurately respond to the development needs of the industry and at the same time promote the realization of the goal of win-win situation for copyright owners and the AI industry, and help the long-term development of the copyright ecological industry.

Key wordsgenerative artificial intelligence    large model training    statutory licensing    efficiency    centralized governance
出版日期: 2025-12-11
基金资助:中国版权保护中心2025年度版权研究课题“作品数字化利用的版权公益组织制度适配研究”(BQ2025006);重庆知识产权保护协同创新中心科研项目“数字时代下著作权法基本范畴体系的重释与创新”(25IP018)

引用本文:

孙山,曾翊展. 从“分散许可”到“集中治理”:法定许可制度因应人工智能训练行为的优化方案[J]. 科技与出版, 2025, 44(10): 105-118.
SUN Shan,ZENG Yizhan. From Decentralized Licensing to Centralized Governance: Optimizing the Statutory Licensing Regime for Artificial Intelligence Training Behavior. Science-Technology & Publication, 2025, 44(10): 105-118.

链接本文:

http://kjycb.tsinghuajournals.com/CN/      或      http://kjycb.tsinghuajournals.com/CN/Y2025/V44/I10/105

1 张金平.人工智能作品合理使用困境及其解决[J].环球法律评论,2019(3):120-132.
2 万勇.人工智能时代著作权法合理使用制度的困境与出路[J].社会科学辑刊,2021(5):93-102.
3 林秀芹.人工智能时代著作权合理使用制度的重塑[J].法学研究,2021(6):170-185.
4 焦和平.人工智能创作中数据获取与利用的著作权风险及化解路径[J].当代法学,2022(4):128-140.
5 蔡元臻.机器学习著作权法定许可的适用基础与规则构建[J].知识产权,2024(11):77-93.
6 孙靖洲.人工智能训练的版权困境及其出路:模块化许可机制探析[J].知识产权,2024(11):94-111.
7 吴家煦,来小鹏.生成式人工智能机器学习的版权困境及其制度因应[J].编辑之友,2024(11):96-104.
8 孙山,张雯雯.生成式人工智能预训练中权利限制制度的选择与建构[J].科技与出版,2024(7):6-15.
doi: 10.16510/j.cnki.kjycb.20240719.002
9 M·雷炳德. 著作权法[M]. 张恩民,译. 北京:法律出版社,2004:3.
10 倪朱亮.生成式人工智能训练使用作品的许可复合机制研究[J].法律科学(西北政法大学学报),2025(4):90-103.
11 马忠法,孟爱华.论我国《著作权法》立法宗旨的修改:以促进文化产业发展为视角[J].同济大学学报(社会科学版),2013(3):103-109,116.
12 李琛.著作权基本理论批判[M].北京:知识产权出版社,2013:31.
13 李纯青,逯琳琳,张洁丽.基于人工智能的效果付费对商业模式创新的作用机理研究:服务生态系统视角[J].西北大学学报(哲学社会科学版),2020(2):119-129.
14 MATTHEWS.The new legal landscape for text mining and machine learning[J].Journal of the Copyright Society of the USA,2019(2):291-368.
15 Openai API收费标准和计算方式,一个中文汉字算多少Token[EB/OL].(2023-12-27)[2024-06-18]. https://blog.csdn.net/ejnoer/article/details/135240489.
16 DeepSeek官网发布的api模型价格[EB/OL]. [2025-07-03]. https://api-docs.deepseek.com/zh-cn/quick_start/pricing.
17 王本欣.“三步检验法”对图书馆适用合理使用制度的影响:以著作权法第三次修订为视角[J].图书馆杂志,2013(5):17-22.
18 熊琦.著作权法定许可的正当性解构与制度替代[J].知识产权,2011(6):38-43.
19 孙山,曾翊展.著作权合理使用制度司法适用的中国经验与未来发展[J].苏州大学学报(法学版),2025(2):100-112.
20 U. S. Copyright Office,Copyright and Artificial Intelligence,Part 3:Generative AI Training[EB/OL]. [2025-07-03]. https://copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf.
21 易军.民法公平原则新诠[J].法学家,2012(4):54-73,177-178.
22 CALABRESIG,MELAMED A.Property rules, liability rules, and inalienability:One view of the cathedral[J].Harvard Law Review,1972(6):1089-1128.
23 汤贞友,谢艺婕.生成式人工智能数据使用的版权侵权风险及其治理[J].中国出版,2024(21):56-61.
24 韩荣.生成式人工智能作品利用的“合理使用+单纯获酬权”模式探析[J].出版广角,2024(19):75-80.
25 曹博.人工智能辅助生成内容的著作权法规制[J].比较法研究,2024(1):76-90.
26 熊琦.著作权法定许可制度溯源与移植反思[J].法学,2015(5):72-81.
27 张曼.论著作权法定许可的正当性基础[J].知识产权,2013(1):48-53.
28 管育鹰.我国著作权法定许可制度的反思与重构[J].华东政法大学学报,2015(2):18-29.
29 SENFTLEBENM.Generative AI and author remuneration[J].International Review of Intellectual Property and Competition Law,2023(10):1535-1560.
30 ANDERSONW.More is different:Broken symmetry and the nature of the hierarchical structure of science[J].Science,1972(177):393-396.
31 邓佳文,任福继.2023年生成式AI大模型发展热点回眸[J].科技导报,2024(1):266-285.
32 BURKD L.Racial bias in algorithmic IP essay[J].Minnesota Law Review,2021(2):270-300.
33 刘友华.算法偏见及其规制路径研究[J].法学杂志,2019(6):55-66.
34 HENRYH,PerrittJr.Robots as pirates[J].Catholic University Law Review,2024(1):57-120.
35 熊琦.非法著作权集体管理司法认定的法源梳解[J].华东政法大学学报,2017(5):84-91.
36 陈艺.用户生成内容中的反公地悲剧及其应对[J].暨南学报(哲学社会科学版),2024(11):74-88.
37 张平.人工智能生成内容著作权合法性的制度难题及其解决路径[J].法律科学(西北政法大学学报),2024(3):18-31.
38 何蓉.面向数字图书馆的延伸性著作权集体管理制度研究[J].图书馆建设,2018(5):13-19.
39 熊琦.著作权延伸性集体管理制度何为[J].知识产权,2015(6):18-24,30.
40 熊琦.著作权法定许可的误读与解读:兼评《著作权法》第三次修改草案第46条[J].电子知识产权,2012(4):25-28.
41 Statement of Sy Damle Before the U.S. House of Representatives Committee on the Judiciary,Subcommittee On Courts,Intellectual Property,And the Internet On "Artificia lIntelligence And Intellectual Property. [EB/OL]. [2025-07-03]. https://judiciary.house.gov/sites/evo-subsites/republicans-judiciary.house.gov/files/evo-media-document/damle-testimony.pdf.
42 孟磊.我国移植著作权延伸性集体管理制度之批判[J].科技与出版,2017(9):54-56.
doi: 10.16510/j.cnki.kjycb.2017.09.016
43 张惠彬,王怀宾.著作权集体管理制度的反思与回应:信托视角下[J].中国编辑,2022(5):56-61.
44 张平.透明度原则在人工智能治理中的适用[J].数字法治,2025(1):20-27.
[1] 刘超. 人工智能时代的教育出版:挑战、机遇与转型路径探索[J]. 科技与出版, 2025, 44(9): 21-28.
[2] 刘普,孙婉婷. 社科学术期刊的AI使用政策图谱与治理进阶——基于50家社科学术期刊生成式人工智能使用政策文本的分析[J]. 科技与出版, 2025, 44(9): 52-62.
[3] 王鹏飞,毛志慧. 2024年出版学研究的十大热点话题[J]. 科技与出版, 2025, 44(6): 5-17.
[4] 王钧,王飚,李苏航. 出版行业构建高质量数据集的优势分析与方法研究[J]. 科技与出版, 2025, 44(6): 64-72.
[5] 陈矩弘,封采龄. 生成式人工智能赋能出版营销的技术逻辑与实践进路[J]. 科技与出版, 2025, 44(4): 76-84.
[6] 谢寿光,王誉梓. 生成式人工智能应用场景下的学术出版和学术编辑:挑战与机遇[J]. 科技与出版, 2025, 44(1): 77-88.
[7] 郭壬癸. 使用生成式人工智能对学术出版伦理的冲击与法律治理*[J]. 科技与出版, 2024, 43(9): 25-33.
[8] 刘倩,王京山,詹洪春. 关于生成式人工智能的应用规范研究与启示[J]. 科技与出版, 2024, 43(8): 27-33.
[9] 孙山,张雯雯. 生成式人工智能预训练中权利限制制度的选择与建构*[J]. 科技与出版, 2024, 43(7): 6-15.
[10] 李青文. 算法训练使用作品的著作权法规制路径*[J]. 科技与出版, 2024, 43(7): 16-27.
[11] 袁真富,夏子轩. 机器学习中作品利用的著作权补偿金制度研究*[J]. 科技与出版, 2024, 43(7): 28-36.
[12] 徐小奔,薛少雄. 生成式人工智能服务提供者版权注意义务的法律构造*[J]. 科技与出版, 2024, 43(7): 48-58.
[13] 王杰. 生成式人工智能服务输出侵犯版权内容的救济研究*[J]. 科技与出版, 2024, 43(7): 59-69.
[14] 李巨星,姜莹. 生成式人工智能赋能出版高质量发展:价值意义、现实梗阻与调治路径*[J]. 科技与出版, 2024, 43(7): 103-111.
[15] 彭昱剑,范军. 生成式人工智能视角下的出版品牌资源建设[J]. 科技与出版, 2023, 42(9): 29-35.