Please wait a minute...
科技与出版  2025, Vol. 44 Issue (10): 13-24    
产业观察
智能驱动与生态重构:中国出版业人工智能应用的现状挑战与趋势研判
杨阳1,宋吉述2,*
1. 人民教育出版社人教研究院,100080,北京
2. 江苏凤凰出版传媒股份有限公司,210003,南京
Intelligence-Driven Transformation and Ecological Reconstruction: Current Status, Challenges, and Trend Analysis of Artificial Intelligence Applications in China’s Publishing Industry
YANG Yang1,SONG Jishu2,*
1. People’s Education Press, 100081, Beijing, China
2. Phoenix Publishing & Media Co., Ltd., 210009, Nanjing, China
全文: HTML    PDF(14165 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 

近年来,随着DeepSeek等通用大模型开源化与低成本化趋势的推进,中国出版业在人工智能(AI)技术的驱动下,迈入了全域深化发展的新阶段,正实现从单点效率优化向全产业链生态重构的跨越式转变。政策引导与技术普惠化推动垂类大模型研发加速,出版机构通过场景化工具链重构、多模态产品融合及跨界生态协同,探索“人机共智”新范式。然而,行业仍面临战略定位模糊、数据与技术双重瓶颈、商业模式创新乏力及人才资金短缺等核心矛盾。展望未来,专业模型将强化核心地位,数据资产成为战略资源,智能体向“自主智能”演进,版权治理与AI人才建设成为关键突破点。出版业需通过技术垂直渗透、数据驱动生态构建及产学研协同,实现从内容生产向智能服务生态的跨越,最终在AIGC浪潮中重塑行业价值。

关键词 人工智能(AI)融合出版垂类大模型数据资产智能体    
Abstract

Driven by open-source initiatives and cost-reduction trends in foundational large language models like DeepSeek, China's publishing industry is undergoing a comprehensive transformation, moving beyond point-based efficiency improvements toward a full-chain ecological restructuring. This research employs a mixed-methods approach, combining longitudinal case studies of leading publishing groups with in-depth interviews involving over 30 industry executives, technology developers, and policy analysts conducted between 2023—2025. Supportive policies and technological accessibility have accelerated the development of vertical-specific large models, with the number of registered generative AI services in publishing increasing by 78% in 2024 alone. Publishing institutions are actively reconstructing scenario-based toolchains, integrating multi-modal products, and engaging in cross-border collaborations to explore a new "human-AI collaboration" paradigm. However, the industry continues to face several core challenges: ambiguous strategic positioning among 68% of surveyed publishers, dual bottlenecks in data quality and technical capabilities, limited innovation in business models, and critical shortages in talent and funding. Looking forward, key trends include the reinforced centrality of professional models as strategic assets, the evolution of agents toward greater autonomy, and essential breakthroughs in copyright governance and AI talent development. The application of AI has systematically enhanced publishing efficiency across multiple dimensions. In editorial processes, AI-assisted editing and intelligent proofreading tools have reduced manuscript processing times by 30%—50%, while automated content generation systems have decreased production costs by approximately 40%. In marketing and distribution, data-driven reader profiling enables precise targeting with 25% higher conversion rates, and AI-powered recommendation systems have increased cross-selling opportunities by 35%. Furthermore, generative AI facilitates innovative content creation, Despite these advancements, significant challenges persist in four key areas. Copyright issues remain complex and multifaceted, with only 30% of publishers having established clear guidelines for AI-generated content ownership. The industry also faces substantial risks related to data quality and model reliability, as 65% of organizations report difficulties in obtaining sufficient high-quality training data. Technical implementation barriers affect 45% of medium-sized publishers, while return on investment (ROI) uncertainties cause 60% of traditional publishers to maintain cautious investment approaches. Moreover, the lack of high-quality, structured proprietary data limits the effectiveness of specialized models for 70% of publishers, creating a significant competitive gap between industry leaders and followers. Future development necessitates deeper vertical integration of AI into core publishing workflows, constructing data-driven ecosystems centered on user needs, and fostering industry-academia-research collaboration. Strategic priorities include developing adaptive AI governance frameworks, establishing industry-wide data standards, and creating continuous learning systems for workforce development. Implementation should focus on building modular AI architectures that enable gradual adoption, beginning with high-impact areas like content enrichment and personalized learning pathways. Ultimately, the industry must transition from traditional content production to building intelligent service ecosystems, with successful early adopters already deriving 40%—50% of their value from AI-enabled services, thereby reshaping its core value within the global AIGC landscape.

Key wordsartificial intelligence (AI)    integrated publishing    vertical-specific large models    data assets    intelligent agents
出版日期: 2025-12-11
通讯作者: 宋吉述   
Corresponding author: Jishu SONG   

引用本文:

杨阳,宋吉述. 智能驱动与生态重构:中国出版业人工智能应用的现状挑战与趋势研判[J]. 科技与出版, 2025, 44(10): 13-24.
YANG Yang,SONG Jishu. Intelligence-Driven Transformation and Ecological Reconstruction: Current Status, Challenges, and Trend Analysis of Artificial Intelligence Applications in China’s Publishing Industry. Science-Technology & Publication, 2025, 44(10): 13-24.

链接本文:

http://kjycb.tsinghuajournals.com/CN/      或      http://kjycb.tsinghuajournals.com/CN/Y2025/V44/I10/13

1 宋吉述, 杨阳. 2023—2024年出版业融合发展现状及趋势研判[J]. 科技与出版, 2024 (6): 26- 37.
2 人工智能发展报告(2024)[R]. 北京:中国信息通信研究院,2024.
3 关于发布2024年生成式人工智能服务已备案信息的公告[EB/OL].(2025-01-08)[2025-05-21]. https://www.cac.gov.cn/2025-01/08/c_1738034725920930.htm.
4 尹琨. “三问”AI大模型推动出版业变革[N]. 中国新闻出版广电报,2025-01-06(1).
5 杨志敏. 出版业首个专业大模型完成”双备案”![EB/OL].(2025-04-11)[2025-05-21]. http://www.cptoday.cn/news/detail/19430.
6 靳艺昕. 人工智能驶入“下半场”出版机构如何介入[N]. 中国新闻出版广电报,2024-07-05(16).
7 新闻出版业人工智能大模型创新应用优秀案例揭晓[EB/OL].(2024-09-28)[2025-05-21]. https://mp.weixin.qq.com/s?__biz=MzA3MzA0OTIzMQ==&mid=2651566072&idx=3&sn=149b310539821a38ced0c1aa1f3a5dda&chksm=84ebfa18b39c730e73367fe0971031c1a62a1aae8772735f4b47b5677120d7d401207e6a98ed&scene=27.
8 石磊. 科技期刊国际化数字出版平台(SciOpen)锁定国际化、精品化、智能化战略助推科技期刊“出海”[N].中国出版传媒商报,2024-12-06(6).
9 2025央国企Al+数智化转型研究报告[R]. 北京:中国软件行业协会信息主管(CIO)分会,2025.
10 李建红, 陈兵, 韦玲, 等. 中小学生课外读物出版的多维度分析[J]. 中国出版, 2025 (4): 15- 20.
11 张聪聪. 出版人都用上AI了吗?体验如何?[N]. 中国出版传媒商报,2025-05-24(1).
12 丁毅, 郑汉. 生成式人工智能技术在出版社的应用现状调查与分析[J]. 中国数字出版, 2025, 3 (2): 83- 91.
13 商小舟,李婧璇. 人工智能深度融入出版生态,下一步关键在哪里?[EB/OL].(2025-04-28)[2025-05-21]. https://mp.weixin.qq.com/s?__biz=MjM5MzIwMTgyNA==&mid=2650902146&idx=2&sn=88e685d56db3200fba13360d4d849bfd&chksm=bc554020d0ea7e1a0d0fe957ef4f8f25b0645ef6af4a045dddb5ed2181b4f21cbc3e4c065c76#rd.
14 晋晓飞. AI技术赋能移动终端数字阅读的创新路径:以掌阅APP为例[J]. 传媒, 2024 (22): 41- 44.
15 SAPKOTA R,ROUMELIOTIS K I,KARKEE M. AI agents vs. agentic ai:A conceptual taxonomy,applications and challenge[EB/OL]. [2025-05-21]. https://arxiv.org/abs/2505.10468.
16 宋海燕,陈玮聪. 浅谈AIGC的可版权性:美国、欧盟、英国与中国之比较[EB/OL].(2023-03-31)[2025-05-21]. https://mp.weixin.qq.com/s?__biz=MzA4NDMzNjMyNQ==&mid=2653303958&idx=1&sn=f5d007bde07cfcf69ac2e12d1b8e7564&chksm=843a5f3cb34dd62a924f0d3d437603880e5744da4e593d50c9287fcddac624ba1f3570c41419&scene=27.
17 生成式AI时代的工作模式、工作组织、工作者[R]. 上海:埃森哲,2024.
18 德科集团发布2025年商业领袖研究报告:仅10%企业做好AI变革准备,人才战略滞后成转型最大瓶颈[EB/OL].(2025-05-16)[2025-05-21]. https://www.prnasia.com/story/489256-1.shtml.
[1] 周青. 知识服务视角下融合出版企业商业模式创新研究[J]. 科技与出版, 2025, 44(9): 13-20.
[2] 商其坤. 融合出版人才培养体系的构建与实践——以外研在线为例[J]. 科技与出版, 2025, 44(9): 38-46.
[3] 郑恩. 数字版权价值评估的多维动态路径研究[J]. 科技与出版, 2025, 44(8): 16-27.
[4] 彭肇一,付晓静. 转向中长视频:出版机构内容运营的发展进路——以bilibili平台为例[J]. 科技与出版, 2025, 44(4): 85-93.
[5] 杨石华,崔重阳,金文恺. “中国式现代化”主题出版的功能价值、实践概况及优化方向[J]. 科技与出版, 2025, 44(11): 68-76.
[6] 杨阳,宋昱霖. 出版企业数据资产的概念、分类与建设*[J]. 科技与出版, 2024, 43(7): 92-102.
[7] 刘欣,蒋雪颖,袁也. 数智时代的国家认同与主题出版融合发展路径探析*[J]. 科技与出版, 2024, 43(2): 71-76.
[8] 沈锡宾,刘鲲翔,刘红霞. 大模型视域下科技期刊数据资产的定义、价值与策略*[J]. 科技与出版, 2024, 43(11): 80-87.
[9] 刘骐荣,张新新. 全媒体出版传播体系视域的融合出版新模式研究*[J]. 科技与出版, 2024, 43(10): 69-79.
[10] 陆朦朦,周雨荷,苟圆林. 出版业中的声音景观:书业播客内容生产实践的不完全观察及反思*[J]. 科技与出版, 2024, 43(10): 60-68.
[11] 王勇安,张艺瑜. 人机协同知识共享共创破解出版内容资源匮乏难题[J]. 科技与出版, 2023, 42(9): 12-19.
[12] 赵宏源. 融合出版中的出版信息资源整合路径探索[J]. 科技与出版, 2023, 42(9): 50-55.
[13] 杨石华. 出版在构建中国式现代化叙事体系中的作用与实践路径*[J]. 科技与出版, 2023, 42(7): 40-48.
[14] 鲁晓双. 元宇宙时代的融合出版:机遇、挑战及发展路径[J]. 科技与出版, 2023, 42(6): 66-72.
[15] 高坚. 融合出版研究:进路、理论维度与核心议题*[J]. 科技与出版, 2023, 42(6): 126-135.