Please wait a minute...
科技与出版  2025, Vol. 44 Issue (9): 21-28    
特别策划·破局·融合
人工智能时代的教育出版:挑战、机遇与转型路径探索
刘超
高等教育出版社有限公司,100120,北京
Education Publishing in the Era of Artificial Intelligence: Challenges, Opportunities, and Exploration of Transformation Pathways
LIU Chao
Higher Education Press, 100120, Beijing, China
全文: HTML    PDF(8810 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 

迅猛发展的生成式人工智能正在深刻重塑教育出版行业的生态格局。本文基于人工智能与教育出版深度融合发展的时代背景,系统分析了生成式人工智能技术对教育出版带来的四重挑战,包括内容生产流程颠覆、知识传播渠道重塑、传统教学模式解构及对教材基础地位的冲击;探讨了人工智能时代教育出版在知识价值重塑、教育服务升维与行业生态重构方面的三大机遇。在此基础上,从定位校准、场景创新、内容升级与能力迭代四个维度,提出教育出版实现从内容提供商向智慧学习服务商转型的路径,分享了高教社的实践案例,并就政策支持与数据治理提出对策建议,为构建人工智能时代教育出版新生态提供理论参考与实践指引。

关键词 教育出版生成式人工智能知识数据化行业转型    
Abstract

Generative artificial intelligence (AI) is profoundly reshaping education publishing. This paper, amid deep AI-publishing integration, adopts a multi-dimensional approach (theoretical analysis, case studies, and industry reviews) to examine its impacts, analyzing challenges, opportunities, and transformation pathways through leading publishers’ experiences. The methodology of this paper comprises a theoretical deconstruction of the interaction between generative AI and education publishing, establishing an analytical framework encompassing content production, knowledge dissemination, teaching models, and textbook functions. In-depth case studies of representative entities are conducted, including Higher Education Press, People’s Communications Publishing House, Springer Nature, and Microsoft’s phi-1 model development project, to examine specific impacts and adaptive strategies, while incorporating industry trend analysis based on policy documents, market data, and technological whitepapers to contextualize transformation dynamics. The challenges presented by generative AI manifest in four primary disruptions: transforming content production processes through intelligent writing tools that reshape the entire chain from topic selection and content creation to editing and proofreading; restructuring knowledge dissemination channels from one-way paper-based transmission to an open networked structure driven by intelligent algorithms enabling personalized content delivery based on user portraits; deconstructing traditional teaching models as the popularization of higher education increases demand for personalized learning, challenging "one-size-fits-all" static textbooks; and impacting the fundamental status of textbooks, with declining reliance on paper materials due to their slow update cycles compared to rapid iteration of cutting-edge knowledge. Amid these challenges, three key opportunities emerge: the digital reconstruction of knowledge value, where high-quality educational content accumulated by publishing institutions becomes scarce data assets for training professional AI models; the intelligent enhancement of educational services, as AI transcends traditional textbook limitations to enable knowledge graph-based personalized learning; and the platform-based reconstruction of industry ecology, with educational publishing shifting from a single content provider to a smart learning service provider covering the entire process of "teaching, learning, assessment, management, and research." To address these dynamics, this paper proposes a transformation path from content provider to smart learning service provider involving four dimensions: positioning calibration (adhering to educational values with AI-human dual review mechanisms), scenario innovation (building a "teacher-student-machine" tripartite collaborative learning paradigm), content upgrading (promoting knowledge datafication and assetization), and capability iteration (cultivating interdisciplinary digital teams). Taking Higher Education Press as a case study, this paper illustrates practices in strategic alignment (linking transformation to national strategies), organizational adjustment (breaking departmental barriers), technological empowerment (developing the LOVONG large model and multi-modal corpus), and product innovation (extending digital textbooks to full-process educational services, such as the "Artificial Intelligence Teaching Public Service Open Zone" on the National Smart Education Platform 2.0). Finally, this paper proposes policy support and data governance measures, including formulating policies for AI-publishing integration, establishing certification systems for high-quality datasets, and promoting collaboration among publishers, AI enterprises, and educational institutions. These findings, derived from integrated research methods, provide both theoretical and practical guidance for developing a new ecosystem of education publishing in the AI era.

Key wordseducation publishing    generative artificial intelligence    knowledge datafication    industry transformation
出版日期: 2025-10-15

引用本文:

刘超. 人工智能时代的教育出版:挑战、机遇与转型路径探索[J]. 科技与出版, 2025, 44(9): 21-28.
LIU Chao. Education Publishing in the Era of Artificial Intelligence: Challenges, Opportunities, and Exploration of Transformation Pathways. Science-Technology & Publication, 2025, 44(9): 21-28.

链接本文:

http://kjycb.tsinghuajournals.com/CN/      或      http://kjycb.tsinghuajournals.com/CN/Y2025/V44/I9/21

1 光谷“独角兽”发布BOOKSGPT,“AI编辑”有望改变出版业[EB/OL].(2024-07-08)[2025-08-08]. https://www.wehdz.gov.cn/2022/zmq_75779/tpxw/202407/t20240708_2425891.shtml.
2 生成式AI出版学术图书实验显示:节省时间潜力大人工指导很重要[EB/OL].(2023-10-18)[2025-08-25]. https://www.chinanews.com.cn/gj/2023/10-18/10096353.shtml.
3 闫松. 完工时间从两年缩短为6个月,人卫社做对了什么[N/OL]. 中国新闻出版广电报,2025-07-07 [2025-08-02]. https://epaper.chinaxwcb.com/epaper/2025-07/07/content_99861899.html.
4 刘彤. 出版业应用人工智能技术:现状、风险及应对[J]. 出版参考, 2025 (3): 37- 41.
5 GUNASEKAR S,ZHANG Y,ANEJA J,et al. Textbooks are all you need[EB/OL].(2023-06-20)[2025-08-08]. https://arxiv.org/abs/2306.11644.
6 LI Y, BUBECK S,ELDAN R,et al. Textbooks are all you need ii:phi-1.5 technical report[EB/OL].(2023-09-11)[2025-08-08]. https://arxiv.org/abs/2309.05463.
7 姚钟溪. 大英百科全书涅槃重生:一个257年老牌纸质出版公司的数字化与AI驱动转型成功之路:百道研究系列之教育出版No.1[EB/OL].(2025-04-10)[2025-06-07]. https://m.bookdao.com/Article.aspx?id=440524.
[1] 张敬柱,吴素平. 构建教育出版服务新生态的探索与思考[J]. 科技与出版, 2025, 44(7): 62-67.
[2] 王鹏飞,毛志慧. 2024年出版学研究的十大热点话题[J]. 科技与出版, 2025, 44(6): 5-17.
[3] 王钧,王飚,李苏航. 出版行业构建高质量数据集的优势分析与方法研究[J]. 科技与出版, 2025, 44(6): 64-72.
[4] 李重,张宇. 大学出版社在“中国系列”原创教材建设中的使命与责任[J]. 科技与出版, 2025, 44(4): 13-22.
[5] 施歌,吴依蔓,王世友. 国际中文教育出版的多维分析[J]. 科技与出版, 2025, 44(4): 23-30.
[6] 陈矩弘,封采龄. 生成式人工智能赋能出版营销的技术逻辑与实践进路[J]. 科技与出版, 2025, 44(4): 76-84.
[7] 谢寿光,王誉梓. 生成式人工智能应用场景下的学术出版和学术编辑:挑战与机遇[J]. 科技与出版, 2025, 44(1): 77-88.
[8] 郭壬癸. 使用生成式人工智能对学术出版伦理的冲击与法律治理*[J]. 科技与出版, 2024, 43(9): 25-33.
[9] 刘倩,王京山,詹洪春. 关于生成式人工智能的应用规范研究与启示[J]. 科技与出版, 2024, 43(8): 27-33.
[10] 孙山,张雯雯. 生成式人工智能预训练中权利限制制度的选择与建构*[J]. 科技与出版, 2024, 43(7): 6-15.
[11] 袁真富,夏子轩. 机器学习中作品利用的著作权补偿金制度研究*[J]. 科技与出版, 2024, 43(7): 28-36.
[12] 徐小奔,薛少雄. 生成式人工智能服务提供者版权注意义务的法律构造*[J]. 科技与出版, 2024, 43(7): 48-58.
[13] 王杰. 生成式人工智能服务输出侵犯版权内容的救济研究*[J]. 科技与出版, 2024, 43(7): 59-69.
[14] 李巨星,姜莹. 生成式人工智能赋能出版高质量发展:价值意义、现实梗阻与调治路径*[J]. 科技与出版, 2024, 43(7): 103-111.
[15] 陈媛媛. 教育出版社业态创新的生成机制、发展逻辑与高质量发展路径[J]. 科技与出版, 2024, 43(4): 28-33.