Please wait a minute...
科技与出版  2025, Vol. 44 Issue (8): 5-15    
专稿
AI驱动下的学术创作范式重构——基于七位跨学科专家观点类编与深度述要
本刊编辑部
《科技与出版》杂志社,100084,北京
A Paradigm Shift in AI-Assisted Academic Writing: A Compilation and In-Depth Summary Based on the Views of Seven Interdisciplinary Experts
Editorial Office
Eitorial Office of Science- Technology & Publication, 100084, Beijing, China
全文: HTML    PDF(1426 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 

要AI正在深刻重塑学术创作的全链条,其在提升研究效率的同时,也引发了关于学术诚信、知识产权与认知范式的深刻挑战。本文基于初景利、李秀、刘丽、沈锡宾、王迁、徐丽芳、张昕等七位跨学科专家的权威观点,系统梳理AI辅助学术创作的现状、风险与未来路径。文章指出,AI的角色正从工具向协作者演进,通过处理低阶认知任务释放人类创造力,形成“认知协同”新生态;然而,其滥用亦导致虚假数据、署名争议与“论文工厂”等伦理失范问题。对此,专家们主张构建“适度调节”的治理框架,强调人类应作为责任主体,通过披露机制、检测技术与评价体系改革,在“工具理性”与“价值理性”间寻求平衡。未来,人机共生将成为学术研究新范式,但人类的批判性思维、创新能力和伦理判断仍是不可替代的核心价值。本文为构建负责任的人机协作学术生态提供了理论参考与实践指南。

关键词 AIAIGC学术创作科研伦理人机协作认知范式    
Abstract

The rapid advancement of generative artificial intelligence (AIGC) is profoundly reshaping the entire academic production chain, offering unprecedented efficiency gains while introducing significant ethical challenges. This article synthesizes insights from seven leading experts across diverse fields—including computer science, law, information science, and publishing— to explore the transformative impact of artificial intelligence (AI) on academic creativity from three dimensions: technological implementation, ethical and normative reconstruction, and future ecosystem development. From a technological perspective, AI is evolving from a mere tool to an active "collaborator." As Li Xiu (Tsinghua University) argues, based on Bloom's Taxonomy, AI efficiently handles lower-order cognitive tasks (e.g., information retrieval, terminology translation, and case enumeration), freeing researchers to focus on higher-order tasks such as analysis, evaluation, and creativity. This "cognitive co-evolution" between humans and AI represents a paradigm shift in academic work. Shen Xibin (Chinese Medical Journals Publishing House Co., Ltd.) further emphasizes AI's role as a "thinking partner" that expedites writing and enhances logical coherence, while Liu Li (Zhipu AI) notes its expanding utility across research ideation, literature review, data visualization, and manuscript polishing. However, these advancements bring critical ethical dilemmas. Wang Qian (East China University of Political Science and Law) demonstrates through empirical testing that AI can generate academically plausible yet ethically problematic content—including fabricated citations and data—raising questions about authorship accountability. The distinction between "AI-generated" and "AI-assisted" content, as defined by the World Intellectual Property Organization (WIPO), becomes crucial in determining academic integrity. Internationally, organizations such as COPE and ICMJE discourage attributing authorship to AI but advocate for transparent disclosure of its use. Yet, as Xu Lifang (Wuhan University) warns, the proliferation of AI-generated fraudulent papers in sensitive fields like health and environment undermines the evidence base of public knowledge. The governance of AI in academia requires a balanced approach. Xu proposes a "moderate regulation" model that avoids the pitfalls of outright prohibition (which stifles innovation) and privileged access (which exacerbate inequities). Instead, she advocates for dynamic, risk-based governance—e.g., pre-approval ethical reviews for high-risk fields like gene editing, sandbox testing for clinical applications, and traceable AI-use reporting in publishing. Zhang Xin (Society of China University Journals) adds that while over 24% of major global publishers have issued AI-use guidelines, detection technologies remain immature, with an average accuracy of only 50-60% in identifying AI-generated text. Looking ahead, AI is poised to further integrate into academic workflows, enabling personalized research assistance, cross-lingual "secondary creation, " and intelligent academic search engines. However, as Chu Jingli (Chinese Academy of Sciences) emphasizes, AI cannot replace human creativity—the core of academic research. The future ecosystem must be one of "human-AI symbiosis, " where humans remain ultimately responsible for steering research direction, ensuring ethical standards, and exercising critical judgment. In conclusion, this article calls for a collaborative effort among researchers, publishers, AI developers, and policymakers to build a responsible academic ecosystem—one that embraces AI's efficiency while safeguarding integrity through robust governance, transparency, and continuous human oversight.

Key wordsAI    AIGC    academic writing    research ethics    human-AI collaboration    cognitive paradigm
出版日期: 2025-09-09

引用本文:

本刊编辑部. AI驱动下的学术创作范式重构——基于七位跨学科专家观点类编与深度述要[J]. 科技与出版, 2025, 44(8): 5-15.
Editorial Office . A Paradigm Shift in AI-Assisted Academic Writing: A Compilation and In-Depth Summary Based on the Views of Seven Interdisciplinary Experts. Science-Technology & Publication, 2025, 44(8): 5-15.

链接本文:

http://kjycb.tsinghuajournals.com/CN/      或      http://kjycb.tsinghuajournals.com/CN/Y2025/V44/I8/5

[1] 陈强,张钢花. 适老化数字出版的现实与未来:基于数字可供性视角[J]. 科技与出版, 2025, 44(6): 73-79.
[2] 孙保营,董琎. AIGC融入学术出版:变革、问题与对策[J]. 科技与出版, 2025, 44(4): 31-36.
[3] 马文欢,王梓薇,黄超兰. AIGC影响数字出版产业链韧性机制模型研究*[J]. 科技与出版, 2024, 43(9): 54-62.
[4] 王壮,陆贵曦,卢明嘉,刘晓晔. 全面迈向智慧出版:AI时代AR/VR类童书的发展困境、技术赋能及价值重构*[J]. 科技与出版, 2024, 43(8): 51-59.
[5] 刘丁勤. 论AIGC创作中的因果可预见性*[J]. 科技与出版, 2024, 43(7): 36-47.
[6] 王霞霞. 文化大模型建构的需求、模式与哲思*[J]. 科技与出版, 2024, 43(6): 60-67.
[7] 揭其涛,王奕诺. 玫瑰荆棘:生成式AI赋能数字出版内容生产的逻辑、机遇与隐忧[J]. 科技与出版, 2024, 43(4): 64-70.
[8] 李强辉. 出版产业视域下的AI赋能与冲击研究[J]. 科技与出版, 2024, 43(4): 71-79.
[9] 李雅筝,刘洪权. AIGC技术赋能高校编辑出版人才培养:转型机遇、能力重构与实践策略*[J]. 科技与出版, 2024, 43(2): 52-57.
[10] 赵凯. 版权、伦理与价值观审核[J]. 科技与出版, 2023, 42(8): 62-68.
[11] 胡正荣,樊子塽. 历史、变革与赋能:AIGC与全媒体传播体系的构建*[J]. 科技与出版, 2023, 42(8): 5-13.
[12] 种晓明. AIGC赋能出版业背景下版权监管新路径研究*[J]. 科技与出版, 2023, 42(8): 96-104.
[13] 李武,谢泽杭,杨飞. AI有声书:价值优势与未来进路*[J]. 科技与出版, 2023, 42(6): 41-47.
[14] 张萌, 朱鸿军. 知识暗流的合规实践:ChatGPT在学术出版中的应用与挑战*[J]. 科技与出版, 2023, 42(5): 33-40.
[15] 杨晓文. 生成式AI与图书封面设计[J]. 科技与出版, 2023, 42(12): 95-102.