Please wait a minute...
科技与出版  2025, Vol. 44 Issue (4): 31-36    
融媒之光
AIGC融入学术出版:变革、问题与对策
孙保营,董琎
郑州大学新闻与传播学院,450001,郑州
AIGC Integration into Academic Publishing: Transformations, Challenges, and, and Strategies
SUN Baoying,DONG Jin
School of Journalism and Communication, Zhengzhou University, 450001, Zhengzhou, China
全文: HTML    PDF(1565 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 

文章基于人工智能生成内容(AIGC)的功能和运行逻辑,阐述其融入学术出版后的智能化生产、多模态呈现、全生态建构等变革特征。然而,技术的革新可能导致学术信任困境、学术批判不足、制约学术公平、遮蔽学术本质等问题。从提升数字技能、坚守学术本质、建立多元评价机制、把握好人机协作关系等方面提出将AIGC更好地融入学术出版的对策建议。

关键词 AIGC学术出版模式重塑人机协作    
Abstract

The release of the DeepSeek-R1 model in early 2025 has significantly garnered public attention and interest regarding artificial intelligence (AI) applications. The emergence of artificial intelligence generative content (AIGC) has led to a flourishing trend in academic publishing, driven by technological advancements, and has sparked a synergy between academic research and publishing practices. AIGC demonstrates extensive applications across various fields, including text creation, speech synthesis, and image editing, which will introduce three main changes to academic publishing: First, the enhancement of production intelligence, which signifies a shift from traditional methods to AI-driven ones. Second, a transition to multimodal presentation, which evolves from solely visual and auditory experiences to more comprehensive multisensory experiences. Third, the development of a complete ecosystem, which advancing from mere technological reshaping to model reshaping. The innovation and application of this technology will greatly improve the quality and efficiency of academic publishing. However, while technological advancement presents opportunities, it also poses challenges, and the quality of risk control and solutions directly affects the integration effect of academic publishing and emerging technologies. Analysis indicates that the AIGC integration in academic publishing presents four primary problems and challenges. First, insufficient accuracy and reliability may undermine trust in academic research. Second, a lack of understanding and critical thinking can hinder innovation in academic research. Third, inadequate interpretability and redundancy can diminish the value of academic research. Finally, insufficient creativity and autonomy will weaken the essence of academic research. To address these challenges, the following countermeasures and suggestions are proposed: First, it should strengthen the digital skills of academic creators and publishers, enhancing their ability and literacy in the scientific use of AIGC technology. Second, it is essential to balance the "changes" and "constants" in academic publishing, ensuring the quality, innovation, and authority of academic content generation. Third, it needs to establish a comprehensive inspection and verification system for academic publishing achievements, enabling full tracking of the academic content production process. Fourth, it must effectively integrate human expertise with AI generation, ensuring users can effectively understand, comprehend, utilize, question, and evaluate AI technology. These measures promote appropriate AIGC technology implementation while avoiding falling into technical misunderstandings and efficiently producing and disseminating academic achievements. In conclusion, while acknowledging the vast opportunities that AIGC brings to academic publishing, it is essential not tounderestimate the disruptive impact that the AI application will have on knowledge production. The process of technology triggering the reconstruction of content production order and human-machine relationship is also a process of publishers constantly updating their understanding of technology and exploring the value of human beings.

Key wordsAIGC    academic publish    model reshaping    human-machine collaboration
出版日期: 2025-04-30
基金资助:2023年度中原英才计划“中原文化领军人才”项目

引用本文:

孙保营,董琎. AIGC融入学术出版:变革、问题与对策[J]. 科技与出版, 2025, 44(4): 31-36.
SUN Baoying,DONG Jin. AIGC Integration into Academic Publishing: Transformations, Challenges, and, and Strategies. Science-Technology & Publication, 2025, 44(4): 31-36.

链接本文:

http://kjycb.tsinghuajournals.com/CN/      或      http://kjycb.tsinghuajournals.com/CN/Y2025/V44/I4/31

1 刘娟. Sora文生视频大模型对学术期刊出版的机遇、挑战及应对[J]. 新疆师范大学学报(哲学社会科学版), 2025 (2): 79- 88.
2 谢寿光. 中国式现代化与中国学术出版高质量发展[J]. 现代出版, 2023 (2): 1- 4.
3 郭壬癸. 使用生成式人工智能对学术出版伦理的冲击与法律治理[J]. 科技与出版, 2024 (9): 25- 33.
4 尼尔·波斯曼. 技术垄断:文化向技术投降[M]. 何道宽,译. 北京:北京大学出版社,2007:10.
5 陈希. 人工智能时代劳动异化危机及其应对[J]. 理论导刊, 2024 (1): 65- 72.
6 宋明珍, 王鹏涛. 知识人异化和复归:人工智能代理参与知识生产的影响与应对[J]. 编辑之友, 2024 (11): 30- 38.
7 姜华. 制造知识:作为媒介的书籍与出版[M]. 北京: 商务印书馆, 2024: 1.
[1] 张敏,张洋. 中国大陆SCI期刊发表的高被引论文情况分析[J]. 科技与出版, 2025, 44(2): 88-98.
[2] 蔡晨露. 地方科技出版社学术出版高质量发展路径探析——基于国家出版基金视角[J]. 科技与出版, 2025, 44(2): 99-106.
[3] 谢寿光,王誉梓. 生成式人工智能应用场景下的学术出版和学术编辑:挑战与机遇[J]. 科技与出版, 2025, 44(1): 77-88.
[4] 马文欢,王梓薇,黄超兰. AIGC影响数字出版产业链韧性机制模型研究*[J]. 科技与出版, 2024, 43(9): 54-62.
[5] 郭壬癸. 使用生成式人工智能对学术出版伦理的冲击与法律治理*[J]. 科技与出版, 2024, 43(9): 25-33.
[6] 刘倩,王京山,詹洪春. 关于生成式人工智能的应用规范研究与启示[J]. 科技与出版, 2024, 43(8): 27-33.
[7] 刘丁勤. 论AIGC创作中的因果可预见性*[J]. 科技与出版, 2024, 43(7): 36-47.
[8] 孙松茜. 浅谈学术出版品牌化建设[J]. 科技与出版, 2024, 43(6): 95-99.
[9] 王霞霞. 文化大模型建构的需求、模式与哲思*[J]. 科技与出版, 2024, 43(6): 60-67.
[10] 李雅筝,刘洪权. AIGC技术赋能高校编辑出版人才培养:转型机遇、能力重构与实践策略*[J]. 科技与出版, 2024, 43(2): 52-57.
[11] 赵凯. 版权、伦理与价值观审核[J]. 科技与出版, 2023, 42(8): 62-68.
[12] 胡正荣,樊子塽. 历史、变革与赋能:AIGC与全媒体传播体系的构建*[J]. 科技与出版, 2023, 42(8): 5-13.
[13] 袁源,谢文亮. ChatGPT在学术出版应用场景中的伦理困境及其纾解之道*[J]. 科技与出版, 2023, 42(8): 89-96.
[14] 种晓明. AIGC赋能出版业背景下版权监管新路径研究*[J]. 科技与出版, 2023, 42(8): 96-104.
[15] 许玮,王鹏涛. 美国科技期刊技术标准化过程机制探析及其对我国的启示*[J]. 科技与出版, 2023, 42(7): 144-152.