Please wait a minute...
科技与出版  2025, Vol. 44 Issue (4): 37-46    
融媒之光
检索增强生成(RAG)驱动的知识服务:原理、范式及评估
王亮
北京印刷学院经济管理学院,102600,北京
Retrieval-Augmented Generation (RAG)-Driven Knowledge Service: Principles, Paradigms, and Evaluation
WANG Liang
School of Economics and Management, Beijing Institute of Graphic Communication, 102600, Beijing, China
全文: HTML    PDF(1596 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 

文章从通用人工智能在专业知识服务领域的局限性入手,分析其在语料来源广度与深度、知识迁移泛化与精确性、参数规模与知识覆盖矛盾以及知识时效性与动态性等方面的不足;提出以检索增强生成(RAG)技术为核心的解决方案,通过结合大语言模型的语义理解与生成能力以及专业知识库的权威性与精确性,将检索与生成功能有机结合,平衡知识服务的形式多样性与内容精准性。在此基础上,文章提出基于RAG技术的知识服务系统构建范式、实施路径和效果评估方法,为出版业实施RAG知识服务提供建议。

关键词 知识服务检索增强生成RAG人工智能评估    
Abstract

This paper examines the limitations of artificial general intelligence (AGI) in professional knowledge service domains, particularly its inability to reconcile the breadth of general-purpose corpora with the depth required for specialized expertise, a challenge exacerbated by the static nature of training data and the inherent trade-offs between generalization and precision. These limitations stem from the AGI’s dependence on open-source, nonspecialized training data, which exclude high-value, peer-reviewed resources, and its static architecture, which struggles to adapt to the dynamic evolution of domain knowledge. To address these challenges, this study proposes Retrieval-Augmented Generation (RAG), a hybrid framework that integrates the semantic comprehension and generative fluency of LLMs with the authority and precision of structured knowledge bases. RAG operates through three interconnected phases: vectorization, where domain-specific texts and user queries are transformed into high-dimensional embeddings to capture semantic nuances; retrieval, which employs similarity search algorithms to extract contextually relevant knowledge snippets from vectorized databases, ensuring alignment with professional standards; and generation, where LLMs synthesize retrieved content with user inputs to produce outputs that balance readability with factual accuracy. The implementation of a RAG requires meticulous attention to knowledge base construction, digitization and standardization of domain content through metadata tagging, ontology development, and knowledge graph integration to ensure semantic consistency. Model selection further influences performance: open-source options such as BGE offer flexibility for niche domains but may lack scalability, whereas commercial solutions such as Aliyun’s text embedding provide robust multilingual support at higher costs. LLM selection must align with application needs: models such as DeepSeek-V3 excel in Chinese-language contexts because of localized optimization, whereas GPT-4 proves advantageous for multilingual tasks despite privacy concerns. Experimental validation via simulated datasets—professional technical manuals, educational quizzes, and popular biographies—demonstrated RAG’s efficacy. In professional scenarios, the RAG algorithm achieves excellent accuracy by leveraging structured knowledge bases. However, in educational and popular contexts, accuracy has decreased slightly, but it is still acceptable. For the publishing industry, a RAG offers transformative potential but demands strategic adaptations. Infrastructure localization is paramount for safeguarding proprietary content; hybrid cloud architectures can balance cost efficiency with data security, whereas blockchain integration ensures immutable copyright tracking. Workflow optimization should automate metadata tagging during editorial processes and integrate consistency checks into proofreading stages, reducing manual labor. Data standardization must address multimodal challenges—e.g., aligning image annotations with textual descriptions—to support emerging applications such as interactive textbooks. Copyright protection requires granular access controls and encryption, particularly for subscription-based services. Despite these advancements, the RAG algorithm faces unresolved challenges: multimodal data integration remains computationally intensive, real-time updates strain system latency, and conflicting knowledge sources necessitate advanced conflict-resolution frameworks. Future research should explore adaptive retrieval algorithms, federated learning for decentralized knowledge bases, and hybrid human-AI validation mechanisms to increase reliability. By bridging AGI’s generative capabilities with domain expertise, the RAG not only elevates the precision and adaptability of knowledge services but also catalyzes innovation in digital publishing, enabling industries to harness their authoritative content as dynamic, interactive assets in an increasingly data-driven world.

Key wordsknowledge service    retrieval-augmented generation    RAG    artificial intelligence    evaluation
出版日期: 2025-04-30
基金资助:国家社会科学基金项目“基于联盟区块链的自媒体侵权监管和版权引导机制研究”(21BXW037)

引用本文:

王亮. 检索增强生成(RAG)驱动的知识服务:原理、范式及评估[J]. 科技与出版, 2025, 44(4): 37-46.
WANG Liang. Retrieval-Augmented Generation (RAG)-Driven Knowledge Service: Principles, Paradigms, and Evaluation. Science-Technology & Publication, 2025, 44(4): 37-46.

链接本文:

http://kjycb.tsinghuajournals.com/CN/      或      http://kjycb.tsinghuajournals.com/CN/Y2025/V44/I4/37

图 1  RAG的工作原理示意图
图 2  RAG知识服务系统工作要点和基础素质对应关系
表 1  实验结果集合
1 国务院关于印发新一代人工智能发展规划的通知[EB/OL]. [2025-02-08]. https://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
2 贾同兴. 人工智能与情报检索[M]. 北京: 北京图书馆出版社, 1997: 15- 103.
3 文森, 钱力, 胡懋地, 等. 基于大语言模型的问答技术研究进展综述[J]. 数据分析与知识发现, 2024, 8 (6): 16- 29.
4 张新新, 丁靖佳. 生成式智能出版的技术原理与流程革新[J]. 图书情报知识, 2023, 40 (5): 68- 76.
5 Medec:a benchmark for medical error detection and correction in clinical notes[EB/OL].[2025-02-08]. https://arxiv.org/abs/2412.19260.
6 朱飞, 张煦尧, 刘成林. 类别增量学习研究进展和性能评价[J]. 自动化学报, 2023, 49 (3): 635- 660.
7 易龙. 从数字出版到智能出版:知识封装方式的演进[J]. 出版科学, 2023, 31 (1): 81- 90.
8 崔浩男. 多模态档案知识服务平台的基本特征与价值取向:基于国内外20个案例的分析[J]. 档案学通讯, 2024 (1): 70- 78.
9 新一代通用向量模型BGE-M3:一站式支持多语言、长文本和多种检索方式[EB/OL]. [2025-02-08]. https://hub.baai.ac.cn/view/34816.
10 阿里云计算有限公司. Embedding模型[EB/OL]. [2025-02-12]. https://help.aliyun.com/zh/model-studio/user-guide/embedding.
11 OpenAI. 嵌入指南(Embeddings Guide)[EB/OL].[2025-02-12]. https://www.openaidoc.com.cn/docs/guides/embeddings.
12 CSDN. 机器学习:回归模型和分类模型的评估方法介绍[EB/OL]. [2025-02-12]. https://blog.csdn.net/rubyw/article/details/142828639.
[1] 陈矩弘,封采龄. 生成式人工智能赋能出版营销的技术逻辑与实践进路[J]. 科技与出版, 2025, 44(4): 76-84.
[2] 汤雪梅,杨春兰,杨玥涵. “十四五”时期中国出版业的回顾与思考[J]. 科技与出版, 2025, 44(1): 6-16.
[3] 谢寿光,王誉梓. 生成式人工智能应用场景下的学术出版和学术编辑:挑战与机遇[J]. 科技与出版, 2025, 44(1): 77-88.
[4] 傅爱雯,王跃,邵波. 数字出版融合生态:体系构建与业务组织[J]. 科技与出版, 2024, 43(9): 63-70.
[5] 郭壬癸. 使用生成式人工智能对学术出版伦理的冲击与法律治理*[J]. 科技与出版, 2024, 43(9): 25-33.
[6] 刘倩,王京山,詹洪春. 关于生成式人工智能的应用规范研究与启示[J]. 科技与出版, 2024, 43(8): 27-33.
[7] 孙山,张雯雯. 生成式人工智能预训练中权利限制制度的选择与建构*[J]. 科技与出版, 2024, 43(7): 6-15.
[8] 袁真富,夏子轩. 机器学习中作品利用的著作权补偿金制度研究*[J]. 科技与出版, 2024, 43(7): 28-36.
[9] 徐小奔,薛少雄. 生成式人工智能服务提供者版权注意义务的法律构造*[J]. 科技与出版, 2024, 43(7): 48-58.
[10] 王杰. 生成式人工智能服务输出侵犯版权内容的救济研究*[J]. 科技与出版, 2024, 43(7): 59-69.
[11] 杨阳,宋昱霖. 出版企业数据资产的概念、分类与建设*[J]. 科技与出版, 2024, 43(7): 92-102.
[12] 李巨星,姜莹. 生成式人工智能赋能出版高质量发展:价值意义、现实梗阻与调治路径*[J]. 科技与出版, 2024, 43(7): 103-111.
[13] 宋吉述,杨阳. 2023—2024年出版业融合发展现状及趋势研判[J]. 科技与出版, 2024, 43(6): 26-37.
[14] 赵廓. 国内外预印本平台比较分析与启示[J]. 科技与出版, 2024, 43(6): 68-74.
[15] 揭其涛,王奕诺. 玫瑰荆棘:生成式AI赋能数字出版内容生产的逻辑、机遇与隐忧[J]. 科技与出版, 2024, 43(4): 64-70.